Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions

Sepideh Mahabadi
Columbia University

Konstantin Makarychev
Northwestern University

Yury Makarychev
TTIC

Ilya Razenshtein
MSR Redmond

1 Definitions

Lipschitz Extension

- A map \(f : X \to Y \) is \(C \)-Lipschitz if for all \(x, x' \in X \):
 \[d_Y(f(x), f(x')) \leq C \cdot d_X(x, x') \]

- A Lipschitz extension of a \(C \)-Lipschitz map \(f : A \to Y \), where \(A \subseteq X \), is a \(C' \)-Lipschitz map \(f' : X \to Y \) such that \(f(x) = f'(x) \) for all \(x \in A \).

Kirszbraun theorem: For \(X = \mathbb{R}^n \) and \(Y = \mathbb{R}^m \), there is always an extension with \(C' = C \); every map \(f : A \to \mathbb{R}^m \) can be extended to the whole \(\mathbb{R}^n \) keeping the same Lipschitz constant.

Bi-Lipschitz Extension

- A map \(f : X \to Y \) is \(D \)-bi-Lipschitz or of distortion \(D \) if for some \(\lambda \) and all \(x, x' \in X \):
 \[\lambda \cdot d_X(x, x') \leq d_Y(f(x), f(x')) \leq D \cdot \lambda \cdot d_X(x, x') \]

Consider Bi-Lipschitz extensions of bi-Lipschitz maps

- Is there an analogue of the Kirszbraun theorem for bi-Lipschitz maps?
 - No direct analogue!
 - Allow \(f' \) to use extra coordinates!

Map \(f' : X \to \mathbb{R}^{m+n} \) is a \(D' \)-outer bi-Lipschitz extension of a \(D \)-bi-Lipschitz map \(f : A \to Y \), where \(A \subseteq X \subseteq \mathbb{R}^n \) and \(Y \subseteq \mathbb{R}^m \), if
 - \(f' \) is an outer extension of \(f \): for every \(x \in A \)
 \[f'(x) = f(x) \oplus (0, \ldots, 0) \]
 - \(f' \) is \(D' \) bi-Lipschitz

2 Results

Consider a \(D \)-bi-Lipschitz map \(f : A \to \mathbb{R}^m \) where \(A \subseteq \mathbb{R}^n \),

Analogue of the Kirszbraun theorem:

- There is an outer bi-Lipschitz extension \(f' : \mathbb{R}^n \to \mathbb{R}^{m+n} \) of \(f \) with distortion 3

Near isometric maps: assume that \(f \) has distortion \(1 + \epsilon \)

- \(f \) can be extended by one point to \(f' : A \cup \{u\} \to \mathbb{R}^{m+1} \) with distortion \(1 + O(\sqrt{\epsilon}) \)
 This bound is tight.

- 1-dimensional case: if \(n = m = 1 \), \(f \) can be extended to \(f' : \mathbb{R} \to \mathbb{R}^2 \), with distortion \(1 + O(1/\log^3 n) \). This bound is tight.

Open Problem: complete the picture for higher dimensions and extensions by more than a single point.

3 Applications to Dimensionality Reduction

Prioritized Johnson-Lindenstrauss

Input:
- a set \(X \) of \(n \) points in \(\mathbb{R}^d \)
- a ranking \(\pi \) on them

Goal: reduce the dimension s.t.
\[f(x) \in \mathbb{R}^d \cap \mathbb{R}^\log n \]
where \(r \) is the rank of \(x \) and \(g \) is polylogarithmic

Dimensional Reduction

Input: a set \(X \subseteq \mathbb{R}^d \) of \(n \) terminals

Goal: find a map \(f : \mathbb{R}^d \to \mathbb{R}^2 \) s.t. for any \(p \in \mathbb{R}^d \) and any terminal \(x \in X \),
\[|x - p| \leq |f(x) - f(p)| \leq D \cdot |x - p| \]

4 Analogue of Kirszbraun

Let
- \(f(x) : A \to \mathbb{R}^m \) be our map with distortion \(D \)
- \(g = f' \circ f(A) \to \mathbb{R}^n \) be its inverse
- \(f(x), f(y) \to \mathbb{R}^m \) be the Lipschitz extension of \(f \)
- \(g(x), g(y) \to \mathbb{R}^n \) be the Lipschitz extension of \(g \)

Kirszbraun-like: \(g \) is \(D \)-Lipschitz extension of \(f \)

- Assume \(f \) is non-contracting
- \(0 \in A \) and \(f(0) = 0 \)
- \(\lambda = 1 \) and \(0 \) is the closest point in \(A \) to \(u \)

Step 1: find a point \(u^* \) in \(\mathbb{R}^m \) s.t.
Using Minimax Theorem
- \(\lambda u^* \leq 1 \)
- Inner products are approximately preserved i.e., \(\langle u^*, (v) \rangle - \langle u, (v) \rangle \leq c\sqrt{(1 + \|v\|^2)} \) for all \(v \in V \)

Step 2:
- Let \(u = u^* \oplus v \), where \(\|v\| \leq 1 \)
- Use some inner products are preserved i.e., \(\langle u', (v') \rangle - \langle u, (v) \rangle \leq c\sqrt{(1 + \|v\|^2)} \) for all \(v \in V \)

Lower Bound: \(1 + O(\sqrt{\epsilon}) \)

5 Extension by One Point

Let: \(f : A \to \mathbb{R}^m \) be a map (where \(A \subseteq \mathbb{R}^n \)) and \(u \in \mathbb{R}^n \) be a point

Simplifying assumptions: Assume wlog that
- \(f \) is non-contracting
- \(0 \in A \) and \(f(0) = 0 \)
- \(\lambda = 1 \) and \(0 \) is the closest point in \(A \) to \(u \)

Step 1:
- find a point \(u^* \) in \(\mathbb{R}^m \) s.t.
- \(\lambda u^* \leq 1 \)
- Inner products are approximately preserved i.e., \(\langle u^*, (v) \rangle - \langle u, (v) \rangle \leq c\sqrt{(1 + \|v\|^2)} \) for all \(v \in V \)

Step 2:
- Let \(u = u^* \oplus v \), where \(\|v\| \leq 1 \)
- Use some inner products are preserved i.e., \(\langle u', (v') \rangle - \langle u, (v) \rangle \leq c\sqrt{(1 + \|v\|^2)} \) for all \(v \in V \)

Lower Bound: \(1 + O(\sqrt{\epsilon}) \)

6 Extension to the Line

Given: a near isometric map \(f : A \to \mathbb{R} \) where \(A \subseteq \mathbb{R} \)
- such a map should be very structured

Permutations: permutation corresponding to the ordering defined by the map
- Valid: only if it excludes \((3,1,4,2) \) and \((2,4,1,3) \) as a “sub-permutation”
- Flips: such a permutation can be decomposed into a sequence of “laminar” flips (reversing an interval)
- (1,2,3,4,5,6) \to (3,2,4,1,5,6) \to (3,1,2,4,5,6) \to (3,1,2,4,6,5)

Spirals:

Basic case: \(f \) maps \((0,1)\) to \((0,-\epsilon,1)\); extend it to the segment \([0,1]\)
- Map \([0,\epsilon] \to [0,-\epsilon] \)
- For \(\epsilon \leq s \leq 1 \) map \(x \to g(x) = (r(x), \phi(x)) \) in polar coordinates
 \[r(x) = x \text{ and } \phi(x) = \frac{\pi}{\ln(1/\epsilon)} \ln(1/\epsilon) \]
 \[\text{Distortion is } 1 + O(1/\ln^2(1/\epsilon)) \]
 \[\text{This is tight!} \]

General case: for each flip, we add a spiral of the “right” scale

[Diagram of spirals and dimensionality reduction]